国内多数医疗AI公司发展遇瓶颈

来源: 鼎臣咨询/dingchenyiyao

人工智能在多个医疗细分领域曾与人类医生交手,2016年5月至今,比分结果是AI 6胜、3平、2负。医生已然落于下风。


2017年岁末,斯坦福大学教授吴恩达领导的机器学习小组开发出一种名为CheXnet的算法,能够更敏锐地捕捉胸部X光片中的肺炎迹象,在诊断肺炎的比拼中,也一举击败四名放射科医师。


这些火种足以让产业界信心爆棚。谷歌、IBM、英特尔等国际巨头和国内的“BATK”(百度、阿里、腾讯、科大讯飞),都加紧布局,一大批初创公司也喷涌而出。


然而,AI的泡沫已然吹起,医疗能否独善其身?这将取决于研究成果能否尽快进入临床,并获得大范围应用,给医疗带来切实改进,以撑起领域公司的估值,冲破“C轮死”的魔咒。


向医生的主场渗透


击败四名放射科医师,CheXnet只经历了一个月的诊断学习。


AI已经在预测中风和心脏病发作、预测婴儿自闭症的风险上表现出明显优势;在外科手术和阿尔茨海默病预测中略胜一筹;在治疗脑肿瘤、先天性白内障诊断和皮肤癌诊断上,跟人类医生打平。“这些示范性的案例,就是一轮又一轮大额度融资的信心来源。”亿欧智库医疗产业分析师尚鞅告诉《财经》记者。过去一年,资本对医疗AI的热情展露得非常明显,因为落地的可能性被印证了。


就医,最核心的部分是诊断。替代医生诊断,是医疗AI的一个终极目标。现阶段的小目标是,能够让AI为医生的诊断及治疗方案提供建议,辅助诊疗。


AI辅助医生做事,先从那些繁琐的、重复性工作起步,提升诊疗效率。企业和研究团队分头趟开两条路:一条基于自然语言处理,根据病历和症状诊断疾病;一条基于计算机视觉,通过识别医学影像诊断疾病。


IBM公司开发的“沃森”(Watson),是第一条路径代表。它四年学习了200本肿瘤教科书、290种医学期刊和超过1500万份的文献后,尝试在14个国家的多个肿瘤治疗中心临床应用。在输入患者的年龄、性别、体重等基本情况和癌症分期、局部复发、化疗方案、病理分期、癌症转移等具体内容后,短短十多秒,沃森就会给出治疗方案,在肺癌、乳腺癌、直肠癌、结肠癌、胃癌和宫颈癌等方面为医生提供诊断建议。


肿瘤医生的智能助手沃森落地中国非常迅速,其国内代理商——百洋智能科技在去年5月曾透露,一年内将有150家地市级的三级综合医院引进沃森。然而,沃森面临的问题是,虽然速度快,但给出的解决方案可能还不是最好的。


第二条路径,AI可将复杂、高维度的医学影像数据,降维使其更易处理,因而可以快速、准确地从医学影像中发现病症的信息,辅助医生诊断。


国内对AI最现实的期待是,纾解三甲医院爆满的困境,协助提升县乡镇的医疗水平,以免漏诊、误诊。


依然是数据为王


一个十分明显的趋势是,AI往医学影像领域扎堆。


动脉网数据显示,国内83家医疗AI企业中,一半涉足医学影像。“(这一领域)正处于黄金期,除提高效率之外,它能找到人力无法找到的病征,今后完全取代医生读片是完全可能的。”海银资本创始合伙人王煜全向《财经》记者分析。


技术驱动因素之外,还有一个重要的底层逻辑在运行。“离开临床数据,AI没法思考。”北京大学肿瘤医院信息部主任衡反修在很多会议上强调这一金句。


要想让AI深入,就需要协调电子病历、化验和影像系统、医生记录和医疗保险索赔材料等多方的大数据,这明显是个难上加难的任务。


即使在先行者美国,也有同样困境。《数字美国》报告显示,美国有近四分之一的医院和超过40%的医生尚未采用电子健康记录系统。即便有电子记录系统,也没有与病人或其他提供者无缝共享数据,因为这些系统无法互通操作,病人需要反复讲述他们的病史。


况且,医疗AI在全球都面临着一些独特的高难度障碍:医疗数据的敏感性和严格的保护隐私规定,限制了AI医疗所要求的高质量聚合数据的收集。如美国医院对患者隐私有很多保护,医院数据不能轻易开放给AI公司。


真正决定中国产生后发优势的,依然是数据够大。李钢观察到,现阶段中国医疗AI产业对美国风向的跟从效应明显。但未来,人口与数据的优势将可能使中国企业狂飙。


“C轮死”魔咒


活过2018年,是很多医疗AI公司的决心。


融资青黄不接、技术迭代的瓶颈,以及商业模式断裂,哪一条都有可能拖垮靠技术吃饭的初创企业。


李钢观察到,当细分行业龙头融资纷纷达到亿元级别后,其中领先企业融资最困难的阶段就近在眼前了。


这是因为,对风险偏好较高的风险投资者而言,细分行业龙头需要的融资额已经超过他们能够投资的体量;而对于较大体量的私募基金而言,这些行业龙头依然处于商业化的探索阶段,没有亮眼的财务数字却顶着极高的估值,实在无法下手。由于亿元级别的融资相当于B轮融资,因此,这个规律被称为“ C轮死”魔咒。


现在,AI医疗影像行业的头部企业,已经进入C轮的那道缺口之中。


黄家祥也认为,2018年对于很多医疗AI公司来说都是一个巨大的挑战,“可能会淘汰掉一批,不光是融资层面的,还包括一些成长不上去的”。


医疗AI跟阿尔法狗一样,需要不停迭代升级。这意味着,要不停用数据去训练AI,并且有医生持续地参与,在真实的应用场景中去支撑AI的持续成长。


一位医疗AI公司创始人对《财经》记者说,一些公司遇到技术迭代的瓶颈,卡住了,“干脆不继续推进,保持低投入、不推广,等着被收购”。


市场集中进程在快速完成,是接受《财经》记者采访的多位资本分析师都认同的医疗AI趋势。“谷歌、腾讯等巨头对初创企业甚至中型公司形成的压制会越来越明显,在接下来的一年,竞争会非常激烈。”王煜全分析称。


再看远些,医疗AI技术如果能够突破应用关,将顶级医生的诊断能力标准化后,交给基层医院,为基层医生提供辅助诊断,会在很大程度上改善医疗资源的紧张状况。


麦肯锡全球研究所预测,大面积使用人工智能诊断疾病可能不会太快发生,即使早已入局的巨头们,也不过是入门级水平,这并不妨碍AI会成功渗入,成为医疗的底层技术,就像之前的IT技术一样。


人工智能和人类医生比谁更聪明,可能还会持续。《新英格兰医学杂志》认为,这种争论没有意义,如何让人工智能和人类医生一起,实现任何单一方都无法提供的临床效果,才是关键。


行业的狂欢和泡沫,是任何一个新技术浪潮的必经之路。最后胜出的,是那些创造了真实价值的技术和产品。

(《财经》记者 贺涛 刘浩南 张利/文)

更多医药信息资讯 请关注“麦斯康莱”