DOE的基本介绍
2
Design-Expert基本介绍
Design-Expert是专门面向实验设计及相关分析的软件,能提供几乎所有我们需要的DOE(实验设计)功能,同时不提供任何与DOE无关的功能。
Design-Expert的主界面非常简单且简洁,以11版为例,软件左侧有常用的三个设计方案:Factorical(因子设计)、Response Surface(响应曲面设计)、Mixture(混料设计):
Factorical(因子设计):
通过确定能影响你的流程或产品关键因素,然后通过改变这些因子达到改进性能的目的;
Response Surface(响应曲面设计):
通过更多的水平实验方案,拟合二阶以上的模型,帮助我们找到设计的最优点;
Mixture(混料设计):
能帮助我们找到最优的混料配方设计。
因子设计是最基本的试验设计方法,筛选试验、部分因子试验、全因子试验都是因子设计的重要方法,通常也是响应曲面设计方法的前奏,用以了解因子以及交互因子作用的显著性。
3
DOE的处方设计
下文中的案例将以因子设计进行展开。
3.1 实验设计背景
3.1.1 处方成分介绍
对于一般仿制药而言,其处方组成基本与RLD保持一致,为此,仿制药的处方组成可通过label或其它途径获取。本案例的处方组成见下表:
本品API为BCS II类药物,具有难溶性特点。因此,对于本品的处方研究可分为两步走:1、研究活性成分的粒径大小、微晶纤维素与乳糖之间的比例、崩解剂用量对CQAs的影响;2、研究外加辅料硬脂酸镁与滑石粉的用量水平对产品质量与工艺的影响。
基于此,我们开始了第一步的DOE处方设计,选用的是常用的Factorical因子设计。
3.1.2 DOE设计
在试验中改变状态的因素称为“因子”;“因子”在试验中所处的状态称为因子水平;试验中所考察的指标(可以是质量特性也可以是产量特性或其他)用Y表示,Y是一个随机变量。
在第一步的DOE处方设计中,确定了“活性成分的粒径大小”、“微晶纤维素与乳糖之间的比例”和“崩解剂用量”这三个“因子”,分别对每个因子进行“高”、“低”两个水平研究,即常说的23:
API粒径分布D90的高低水平分别为30um和10um;
崩解剂用量的高低水平分别5%和1%;
MCC的比例的高低水平分别为66.7%和33.3%。
3.1.3 实验结果输入
在经过前文2水平3因子的分析后,选择30min的溶出度、CU、ffc值和硬度作为四个Y值变量,输入结果如下图:
3.1.4 结果分析
实验结果分析在主界面左边Analysis项下,里面有我们设定的4个Y变量,即30min的溶出度、CU、ffc值和硬度。
30min的溶出度
任何方差分析(ANOVA)的零假设都是各因子都没有作用,即所有的偏差是由随机误差造成的。如果零假设成立的话,效果的正态概率分布图将是一条直线。任何因素的作用偏离直线越远,则说明该因素的偏差来自随机偏差的可能性就越小。
从上图“半正态分布图Half-Normal Plot”可看出,A、B和AB均偏离直线远,说明这三个因素的偏差来自于随机偏差的可能性小。说明因子A和B对30min溶出度影响大,即API PSD D90和崩解剂用量。
从上图“等值线图Contour”可看出,溶出度dissolution随着API PSD D90的增大而降低,但又随着崩解剂Disintegrant的增加而变高。若MCC在MCC与乳糖总量中占比50%(即MCC:乳糖=1:1)时,崩解剂为1 ~ 5%、原料药粒径D90为10 ~ 30 um范围内对30min溶出的影响。根据图中显示,若API PSD D90低于27um,崩解剂用量1 ~ 5%均能达到30min溶出度≥80%;若API PSD D90为30um时,崩解剂用量至少需要2.5%才能达到30min溶出度≥80%。值得注意的是,此处MCC占比可以调整。
「博普智库」
专注制药人资源获取与学习成长的平台
100000份行业资源等你来!